Composites and Sustainability: What is the State of the Art

PATTON ENGINEERING AND CONSULTING

A Subsidiary of Red Rooster Ltd.

ASME IMECE2023 Paper Number 112333

Sustainability – What Is It and what Isn't it?

Sustainability is NOT:

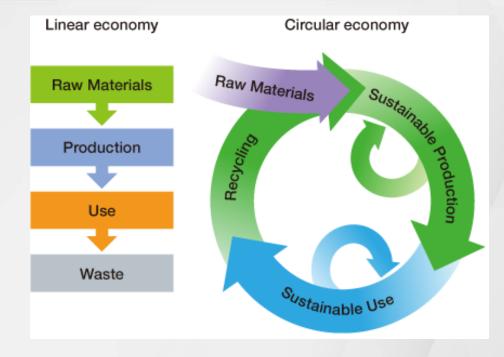
Just the ability to recycle some components at end of useful life

OR

Continuing the use of petroleum in any raw material or process for composites

Sustainability IS:

Use of plant-based or recycled raw materials and precursors


AND

Use of renewable energy sources for all composites processing

Linear Versus Circular Economy

- Current State of the Art is Linear
 - 1) Petroleum Precursors
 - 2) Fibers & Resins
 - 3) Composite Part(s)
 - 4) Use until worn out
 - 5) Grind Up and Landfill
- This has to Change to Achieve Sustainability

Our Biggest Problem

- Wind Turbine Blades at end of life
- Most are cut up and put in a landfill
- Potential for 50
 Million Tons of
 Blades by 2050

Some of the Other Problem(s)

- Aging Aircraft
 - Boeing 787 and Airbus A350
 - More than 2000 will need to be recycled / reused in next 20 years
- Automotive Sector
 - Percentage of Composites in new cars only going up
 - In 20-30 years these newer cars will end up in junk yards
- Sporting Goods
 - Tennis rackets, golf clubs, helmets, paddleboards, canoes,...

Where Are We Today?

- Beginning to reclaim some carbon fiber
 - Usually chopped up into smaller bits and resin pyrolyzed
- Also starting to reclaim some parts of wind turbine blades
- Thermoplastics usually cut up and reprocessed

The Future

- New Resins
 - Plant-based precursors (biomass sugars)
 - Reformulated to be easily dissolved by special catalysts
- Carbon fibers from plant fiber
 - Flax, corn stalks, wood cellulose waste
- New Precursors for Carbon Fiber
 - Plant-based acrylonitrile
 - Lignin waste from paper processing
 - Nanocellulose fibrils

Project ELIOT (Europe)

TECHNOLOGY READINESS LEVEL		CURRENT STATE OF EOL METHOD FOR CONVENTIONAL COMPOSITES		ELIOT EOL METHODS FOR BIOCOMPOSITES			
9	ACTUAL SYSTEM "FLIGHT PROVEN" THROUGH SUCCESFUL MISSION OPERATIONS	INCINERATION	LANDFILL			A	
8	ACTUAL SYSTEM COMPLETED AND "FLIGHT QUALIFIED" THROUGH TEST AND DEMONSTRATION (GROUND OR SPACE)	PYROLYSIS (CF)	MECHANICAL RECYCLING (GF)	SOLUTIONS READY	FTER P		
7	SYSTEM/SUBSYSTEM DEMONSTRATION IN A SPACE ENVIRONMENT	PYROLYSIS (GF)	MECHANICAL RECYCLING (CF)	FOR PROTOTYPE DEVELOPMENT		PROJEC	
6	SYSTEM/SUBSYSTEM MODEL OR PROTOTYPE DEMONSTRATION IN A RELEVANT ENVIRONMENT (GROUND OR SPACE)						
5	COMPONENT AND/OR BREADBOARD VALIDATION IN RELEVANT ENVIRONMENT			BEST METHOD BIOCOMPOSITE A	BEST METHOD BIOCOMPOSITE B		М. 3
4	COMPONENT AND/OR BREADBOARD VALIDATION IN LABORATORY ENVIRONMENT	FLUIDISED BED PYROLYSIS	SOLVOLYSIS		HOD METHOD ED 2 ND RANKED 3 RD	PROJECT	M. 2
3	ANALYTICAL AND EXPERIMENTAL CRITICAL FUNCTION AND/OR CHARACTERISTIC PROOF-OF-CONCEPT	MICROWAVE-ASSITED PYROLYSIS		3 SELECTED EOL METHODS			M.
2	TECHNOLOGY CONCEPT AND/OR APPLICATION FORMULATED			12 EOL METHO	DDS EVALUATED	PROGRESS	M.
1	BASIC PRINCIPLES OBSERVED/REPORTED			ANY EOL METHOD FOR BIOCOMPOSITES		1 3446	M.

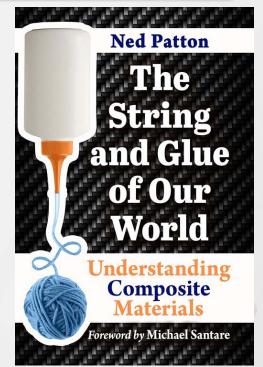
"End of Life for Biomaterials"

Roughly Translated (from Spanish)
ELIOT is focused on end of life for Biocomposites

ELICT

Conclusions

- We have a lot of work to do
- Engineers are going to be the key to solving the sustainability challenge
- The good news the composites industry is engaged and working on these challenges now
- Europe is a little ahead of us but we are catching up
- If you are in the industry get involved. Together we can make this happen.


European Composites Industry Association

Thanks for Listening

www.nedpatton.com

ned@nedpatton.com

